首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   17篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   5篇
  2012年   10篇
  2011年   2篇
  2010年   4篇
  2009年   3篇
  2008年   4篇
  2007年   12篇
  2006年   6篇
  2005年   2篇
  2004年   4篇
  2003年   4篇
  2002年   5篇
  2001年   3篇
  2000年   6篇
  1999年   5篇
  1998年   4篇
  1997年   1篇
  1995年   3篇
  1994年   1篇
  1992年   4篇
  1991年   6篇
  1990年   4篇
  1989年   2篇
  1988年   5篇
  1986年   4篇
  1985年   1篇
  1984年   2篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有129条查询结果,搜索用时 15 毫秒
41.
42.
p97, a Mg-ATPase belonging to the AAA (ATPase associated with various cellular activities) super family of proteins, has been proposed to function in two distinct cellular pathways, namely homotypic membrane fusion and ubiquitin protein degradation by utilizing differing adaptor complexes. We present the cryo-electron microscopy three-dimensional reconstruction of endogenous p97 in an AMP-PNP bound state at 24 A resolution. It reveals clear nucleotide-dependent differences when compared to our previously published "p97-ADP" reconstruction, including a striking rearrangement of N domains and a positional change of the two ATPase domains, D1 and D2, with respect to each other. The docking of the X-ray structure of N-D1 domains in an ADP bound state indicates that an upward repositioning of N domain is necessary to accommodate the cryo-EM map of "p97-AMP-PNP", suggesting a change in the orientation of N domains upon nucleotide hydrolysis. Furthermore, computational analysis of the deformational motions of p97, performed on the cryo-EM density map and the atomic structure of the N-D1 domains independently, shows the existence of a negative cooperativity between the D1 and D2 rings and the flexibility of the N domains. Together these results allow the identification of functionally important features that offer molecular insights into the dynamics of the proposed p97 chaperone function.  相似文献   
43.
Biopolymers, such as poly-3-hydroxybutyrate (P(3HB)) are produced as a carbon store in an array of organisms and exhibit characteristics which are similar to oil-derived plastics, yet have the added advantages of biodegradability and biocompatibility. Despite these advantages, P(3HB) production is currently more expensive than the production of oil-derived plastics, and therefore, more efficient P(3HB) production processes would be desirable. In this study, we describe the model-guided design and experimental validation of several engineered P(3HB) producing operons. In particular, we describe the characterization of a hybrid phaCAB operon that consists of a dual promoter (native and J23104) and RBS (native and B0034) design. P(3HB) production at 24 h was around six-fold higher in hybrid phaCAB engineered Escherichia coli in comparison to E. coli engineered with the native phaCAB operon from Ralstonia eutropha H16. Additionally, we describe the utilization of non-recyclable waste as a low-cost carbon source for the production of P(3HB).  相似文献   
44.
The precise biochemical role of N-ethylmaleimide-sensitive factor (NSF) in membrane fusion mediated by SNARE proteins is unclear. To provide further insight into the function of NSF, we have introduced a mutation into mammalian NSF that, in Drosophila dNSF-1, leads to temperature-sensitive neuroparalysis. This mutation is like the comatose mutation and renders the mammalian NSF temperature sensitive for fusion of postmitotic Golgi vesicles and tubules into intact cisternae. Unexpectedly, at the temperature that is permissive for membrane fusion, this mutant NSF binds to, but cannot disassemble, SNARE complexes and exhibits almost no ATPase activity. A well-charaterized NSF mutant containing an inactivating point mutation in the catalytic site of its ATPase domain is equally active in the Golgi-reassembly assay. These data indicate that the need for NSF during postmitotic Golgi membrane fusion may be distinct from its ATPase-dependent ability to break up SNARE pairs.  相似文献   
45.
The BRCA1 C-terminal region contains a duplicated globular domain termed BRCT that is found within many DNA damage repair and cell cycle checkpoint proteins. The unique diversity of this domain superfamily allows BRCT modules to interact forming homo/hetero BRCT multimers, BRCT-non-BRCT interactions, and interactions with DNA strand breaks. The sequence and functional diversity of the BRCT superfamily suggests that BRCT domains are evolutionarily convenient interaction modules.  相似文献   
46.
47.
p97, an abundant hexameric ATPase of the AAA family, is involved in homotypic membrane fusion. It is thought to disassemble SNARE complexes formed during the process of membrane fusion. Here, we report two structures: a crystal structure of the N-terminal and D1 ATPase domains of murine p97 at 2.9 A resolution, and a cryoelectron microscopy structure of full-length rat p97 at 18 A resolution. Together, these structures show that the D1 and D2 hexamers pack in a tail-to-tail arrangement, and that the N domain is flexible. A comparison with NSF D2 (ATP complex) reveals possible conformational changes induced by ATP hydrolysis. Given the D1 and D2 packing arrangement, we propose a ratchet mechanism for p97 during its ATP hydrolysis cycle.  相似文献   
48.
49.
Bacteriophage T4 beta-glucosyltransferase (EC 2.4.1.27) catalyses the transfer of glucose from uridine diphosphoglucose to hydroxymethyl groups of modified cytosine bases in T4 duplex DNA forming beta-glycosidic linkages. The enzyme forms part of a phage DNA protection system. We have solved and refined the crystal structure of recombinant beta-glucosyltransferase to 2.2 A resolution in the presence and absence of the substrate, uridine diphosphoglucose. The structure comprises two domains of similar topology, each reminiscent of a nucleotide binding fold. The two domains are separated by a central cleft which generates a concave surface along one side of the molecule. The substrate-bound complex reveals only clear electron density for the uridine diphosphate portion of the substrate. The UDPG is bound in a pocket at the bottom of the cleft between the two domains and makes extensive hydrogen bonding contacts with residues of the C-terminal domain only. The domains undergo a rigid body conformational change causing the structure to adopt a more closed conformation upon ligand binding. The movement of the domains is facilitated by a hinge region between residues 166 and 172. Electrostatic surface potential calculations reveal a large positive potential along the concave surface of the structure, suggesting a possible site for duplex DNA interaction.  相似文献   
50.
The results of several secondary-structure prediction programs were combined to produce an estimate of the regions of alpha-helix, beta-sheet and reverse turns for fructose-bisphosphate aldolases from human and rat muscle and liver, from Trypanosoma brucei and from Drosophila melanogaster. All the aldolase sequences gave essentially the same pattern of secondary-structure predictions despite having sequences up to 50% different. One exception to this pattern was an additional strongly predicted helix in the rat liver and Drosophila enzymes. Regions of relatively high sequence variation generally were predicted as reverse turns, and probably occur as surface loops. Most of the positions corresponding to exon boundaries are located between regions predicted to have secondary-structural elements consistent with a compact structure. The predominantly alternating alpha/beta structure predicted is consistent with the alpha/beta-barrel structure indicated by preliminary high-resolution X-ray diffraction studies on rabbit muscle aldolase [Sygusch, Beaudry & Allaire (1986) Biophys. J. 49, 287a].  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号